ORIGINAL ARTICLE

Cyclooxygenase-2 (COX2) expression in adenocarcinoma surpasses that of squamous cell carcinoma in the uterine cervix

Ananth Kumar MARUTHA MUTHU MD, Phaik-Leng CHEAH MBBS, FRCPA, Cing-Chai KOH BSc, Man-Fong CHEW MBBS, MPath, Yen-Fa TOH MD, MPath and Lai-Meng LOOI FRCPA, FRCPath

Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia

Abstract

Over the years, adenocarcinoma (ADC), which has a worse prognosis than squamous cell carcinoma (SCC) of the cervix, has shown an increasing trend. Cyclooxygenase-2 (COX2) expression which has been associated with worse prognosis in several solid cancers was studied for its association with SCC and ADC of the cervix. 35 histologically re-confirmed SCC and 35 ADC were immunohistochemically stained for COX2 using a mouse monoclonal antibody to COX2 (1:100; Dako: Clone CX-294) on a Ventana Benchmark XT. The histoscore was computed as intensity of staining, semi-quantitated on a scale of 0-3 with 0 = negative, 1 = weak, 2 = moderate and 3 = strong staining intensity; multiplied by percentage of immunopositivity on a scale of 0-4 with 0 = <1%, 1 = 1-25%, 2 = 26-50%, 3 = 51-75% and 4 = ≥75% of immunopositive tumour cells. Histoscore 1-3/12 was considered as low and ≥4/12 as high COX2 expression. SCC affected Chinese more than Malays, while Malays had more ADC (p = 0.032). Mean age at presentation of SCC (57.5 years) was about a decade later than ADC at 47.9 years (p = 0.002). 30/35 (85.7%) of SCC and 34/35 (97.1%) of ADC expressed COX2. Histoscores of ADC (median = 4.0, IQR = 3.0-6.0) was significantly higher (p = 0.014) than those of SCC (median = 3.0, IQR = 2.0-3.0). High histoscores (≥4/12) were more frequent in ADC (55.9%) compared with SCC (26.7%) (p = 0.018), implicating COX2, either directly or indirectly, as a possible player in influencing the poorer outcome of ADC compared with SCC.

Keywords: COX2, cervix, squamous cell carcinoma, adenocarcinoma

INTRODUCTION

Globally, cervical cancer is the third most common cancer in females and the fourth leading cause of cancer mortality among women.1 Squamous cell carcinoma (~70%) is the major histological subtype of cervical carcinoma followed by adenocarcinoma (~20%) with rarer subtypes including adenosquamous and neuroendocrine carcinomas making up the rest.2 While squamous cell carcinoma (SCC) has shown a decreasing trend, adenocarcinoma (ADC) has not, and appears to be steadily increasing over the years.3-5 This trend has also been recorded in an earlier study amongst Malaysians.6 Besides the increasing trend, more importantly, the rise of cervical adenocarcinoma translates into an increase of a histological type which fares less well than its squamous counterpart.7,9

Cyclooxygenase is a key enzyme that catalyses the conversion of arachidonic acid to prostaglandins and has 2 isoforms, cyclooxygenase-1 (COX1) and cyclooxygenase-2 (COX2).10 COX1 is present in normal tissues and participates in physiological processes while COX2 is generally not found under normal circumstances but can be induced by cytokines, growth factors, bacterial endotoxins and tumour promoters11 and involves itself in tumour progression through regulating cell proliferation, apoptosis, immune surveillance, angiogenesis and cell adhesion via prostaglandin E2.12,13 Although COX2 expression has been shown in several solid tumours including those of the breast, lung, liver, pancreas, colorectum14 etc., with reports of negative impact on prognosis and worse outcome for cancers which express COX2,15-18 work on cervical cancers remains few. Bearing this in mind, we initiated a study to determine the expression of COX2 in cervical carcinoma. Taking into account the generally poorer expected
outcome of ADC compared with SCC we were also interested to determine whether expression of COX2 is differentially elevated in these two histological types.

MATERIALS AND METHODS

Thirty-five consecutive cases of cervical SCC and cervical ADC respectively, histologically diagnosed for the first time from 31 December 2012 backwards, at the Department of Pathology, University of Malaya Medical Centre (UMMC), were retrieved from a cohort identified from another ongoing study by the authors. All the slides of the cases were histologically reviewed and only re-confirmed cases were admitted. A paraffin block of the formalin-fixed cervical SCC and ADC was selected during the review for immunohistochemical staining and only blocks that had sufficient tissue remaining for future review, after sectioning for this study, were finally cut. One 4-μm section from each case was cut on to a platinum coated slide (Matsunami Glass Industries, Japan) for immunohistochemical staining with a mouse monoclonal antibody to COX2 (1:100; Dako: Clone CX-294) using a Ventana Benchmark XT automated system. A case of breast carcinoma previously tested positive for COX2 served as a positive control and was run with each batch.

COX2, expressed in the cytoplasm of the tumour cells, was semi-quantitated for intensity of staining on a scale of 0-3, with 0 = negative, 1 = weak, 2 = moderate and 3 = strong staining as well as for percentage of tumour cells stained on a scale of 0-4, with 0 = <1%, 1 = 1-25%, 2 = 26-50%, 3 = 51-75% and 4 = ≥75% of tumour cells expressing COX2. The histoscore was computed as the intensity of staining multiplied by the percentage of immunopositive tumour cells, and ranged from 0-12. Histoscore range of 0-12 was recorded for both SCC and ADC cases with the histoscores of ADC (median = 4.0, interquartile range = 3.0-6.0) being significantly higher (p = 0.014) than those of SCC (median = 3.0, interquartile range = 2.0-3.0). On further subcategorization of the COX2 histoscores into low (1-3/12) and high (≥4/12) scores, high histoscores were expressed by SCC in 8 (26.7%) and low histoscores in 22 (73.3%) of the 30 cases.

TABLE 1: Demographic profile of the cervical squamous cell carcinoma (SCC) and adenocarcinoma (ADC) cases

<table>
<thead>
<tr>
<th>Ethnic group</th>
<th>SCC (n = 35)</th>
<th>ADC (n = 35)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malay</td>
<td>8 (22.9%)</td>
<td>17 (48.6%)</td>
</tr>
<tr>
<td>Chinese</td>
<td>15 (42.9%)</td>
<td>9 (25.7%)</td>
</tr>
<tr>
<td>Indian</td>
<td>7 (20.0%)</td>
<td>5 (14.3%)</td>
</tr>
<tr>
<td>Not available</td>
<td>5 (14.3%)</td>
<td>4 (11.4%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>SCC</th>
<th>ADC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>38-80</td>
<td>25-73</td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>57.5 ± 12.4</td>
<td>47.9 ± 12.0</td>
</tr>
</tbody>
</table>
positive cases. In contrast, ADC expressed high histoscores in 19 (55.9%) and low histoscores in 15 (44.1%) of the 34 positive cases. Hence, more cases of ADC expressed high histoscores compared with SCC (p = 0.018).

DISCUSSION

Although there appears to be an increased preponderance of Chinese in the SCC group and Malays in the ADC group, this observation requires further study on larger populations to entitle a proper conclusion to be made regarding ethnic predilection. Similar to some other studies, the presentation of cervical ADC also occurred earlier than SCC in our cohort. However, it has to be borne in mind that there are also studies where patients with ADC are not shown to be younger than those with SCC at presentation.

In our study, 85.7% of SCC and 97.1% of ADC showed some immunopositivity for COX2, while others have recorded rates ranging between 24%-100% in SCC and 55%-100% in ADC. The wide range of rates reported is not surprising as there is still a lack of standardisation in the interpretation of “immunopositivity” and this

<table>
<thead>
<tr>
<th>Cyclooxygenase-2 histoscore</th>
<th>Squamous cell carcinoma (n = 35)</th>
<th>Adenocarcinoma (n = 35)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>0-12</td>
<td>0-12</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>3.0</td>
<td>4.0</td>
<td>0.014</td>
</tr>
<tr>
<td>IQR</td>
<td>2.0-3.0</td>
<td>3.0-6.0</td>
<td></td>
</tr>
<tr>
<td>Positive expression</td>
<td>30</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Low histoscore (Score = 1-3)</td>
<td>22 (73.3%)</td>
<td>15 (44.1%)</td>
<td>0.018</td>
</tr>
<tr>
<td>High histoscore (Score = 4-12)</td>
<td>8 (26.7%)</td>
<td>19 (55.9%)</td>
<td></td>
</tr>
</tbody>
</table>
has always to be considered when making inferences. In this study, using a histoscore derived by multiplying the intensity of staining and the percentage of tumour cells expressing COX2, it was noted that ADC had significantly higher histoscores compared with SCC. Taking cognisance of the lack of uniformity in interpretation of “immunopositivity” and the various cut-offs employed by different workers,6,26-28 we decided to further stratify the cases of SCC and ADC which expressed COX2 into those with low histoscores (1-3/12) and those with high histoscores (≥4/12) to provide added insight into whether ADC do have higher COX2 expression compared with SCC. By doing so, we also tried to eliminate the possibility of low-level expression of COX2 which may occur as a result of other non-neoplastic processes e.g. inflammation, as while Nagai et al29 report that COX2 is not expressed in normal cervices, others have observed COX2 expression in normal cervices.30,31 By stratification into 2 categories of histoscores, it was noted that ADC demonstrated high histoscores in 55.9% of cases while SCC expressed high histoscores in 26.7% (p = 0.018). Thus, it appears reasonable to conclude that COX2 is expressed in both SCC and ADC of the cervix, but more frequently in ADC compared with SCC, a finding which lends further support to the observations noted by others.23,29,32,33

The finding of COX2 expression in both SCC and ADC of cervix implicates COX2’s participation in these two common cervical cancers. COX2 expression has been associated with poorer outcome of cervical cancers.23 The increased expression in ADC over SCC is important as it may indicate a role for COX2, whether directly or indirectly, in influencing the poorer outcome of ADC compared with SCC. This should provide impetus towards design of mechanistic approaches that may unravel the role of COX2 in both histological types that can eventually lead to unravelling of treatment targets.34,35

ACKNOWLEDGEMENT

This study was funded by University of Malaya’s research grants RG493-13HTM and PO038-2015B.

REFERENCES

